If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+3q-27=0
a = 1; b = 3; c = -27;
Δ = b2-4ac
Δ = 32-4·1·(-27)
Δ = 117
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{117}=\sqrt{9*13}=\sqrt{9}*\sqrt{13}=3\sqrt{13}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3\sqrt{13}}{2*1}=\frac{-3-3\sqrt{13}}{2} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3\sqrt{13}}{2*1}=\frac{-3+3\sqrt{13}}{2} $
| 4y+25=137 | | -x+3=-(6+2x) | | (6)-8p=38 | | 3y-y+4=y+10 | | 14=12s÷3 | | 15+(2x–3)=10x–(3x–2) | | 12÷15.315=r | | -x+3=-(6+2) | | 11x-8=-96 | | 3p-62=p, | | 1^2x-6=-4 | | 8x+(5x–6–4x+1)=x–(x–4) | | 14x-4=12x-2 | | 16x-8=12x-2 | | 1÷3y-18=2 | | 7(x-12)=3+2 | | -42=-w/4 | | 3x=-21x+4 | | 2+4=-3s | | 3u+2u+4=19 | | x+-100x-70=-1060 | | 2x+7=-5x+7 | | 43=9w-2 | | 3x+4x-3x+3=11 | | 8=n48 | | 8-15x=5x+28 | | 8m-m=7 | | 4.5=m-2.2 | | 14x+3=2x+135 | | 9n+n+n-n=20 | | 5n-200=350 | | 16t-5t-11t+t=20 |